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Abstract. Expression of the nucleon-nucleon interaction to leading order in 1/NC in terms of Fermi invari-
ants allows a dynamical interpretation of the interaction and a consistent construction of the associated
interaction currents. The numerically significant components of 4 different modern realistic phenomeno-
logical interaction models admit very similar meson exchange interpretations in the large-NC limit. The
ratio of the volume integrals of the leading, next-to-leading and next-to-next leading-order terms in these
interaction models is roughly 300 : 5–10 : 0.1, which corresponds fairly well to the ratios of 1/N2

C between
the terms that would be suggested by the 1/NC expansion if NC = 3.

PACS. 13.75.Cs Nucleon-nucleon interactions (including antinucleons, deuterons, etc.) – 21.30.Cb Nuclear
forces in vacuum

1 Introduction

The large color number limit of QCD allows a series ex-
pansion in 1/NC for hadronic observables, where the first
few terms capture the key phenomenological features of
the structure of the baryons [1]. The leading terms in the
1/NC series expansion of the components of the nucleon-
nucleon interaction have been shown to correspond well
with the strongly coupled exchange terms in a phenomeno-
logical meson exchange model for the interaction [2].

All the most commonly employed modern realistic phe-
nomenological interaction models allow an interpretation
in terms of phenomenological meson exchange and their
numerically significant components correspond well to the
leading terms in the 1/NC expansion of the interaction
components. The ratio of the volume integrals of the lead-
ing, next-to-leading and next-to-next leading-order terms
in these interaction models is roughly 300 : 5 − 10 : 0.1,
which matches the ratios of 1/N2

C between the terms that
is suggested by the 1/NC expansion for NC = 3.

A dynamical interpretation of a phenomenological in-
teraction model is possible if it is expressed in terms of the
5 Fermi invariants. That separates the interaction into lin-
ear combinations of scalar, vector, axial vector and pseu-
doscalar exchange mechanisms. These invariants define
consistent interaction current operators [3,4], for which
1/NC expansions follow from those of the corresponding
potentials [5].

The nucleon-nucleon interaction models that are con-
sidered here are the V18 [6], the CD-Bonn [7], the Ni-
jmegen(93) [8] and the Paris [9] potentials. All of these
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have long-range pion exchange tails, and phenomenologi-
cal short-range terms. Their components in the Fermi in-
variant representation are remarkably similar in strength,
and when parametrized in terms of single-meson exchange
give rise to similar “effective” meson-nucleon couplings.

2 The nucleon-nucleon interaction in the
large-NC limit

2.1 Phenomenological interactions

The nucleon-nucleon interaction is commonly expressed in
terms of the following set of Galilean invariant spin and
isospin operators:

VNN =
5∑
i

[ṽ+
j + ṽ−j τ 1 · τ 2] Ω̃j , (1)

where the coefficients ṽ±j are scalar functions and the spin
operators Ω̃j are defined as

Ω̃C = 1, Ω̃LS = L · S, Ω̃T = S12,

Ω̃SS = σ1 · σ2, Ω̃LS2 =
1
2
{σ1 · L,σ2 · L}+ . (2)

The powers of the leading terms in the 1/NC expansion
for these potential components are the following [2]:

ṽ+
C Ω̃C , ṽ−T Ω̃T , ṽ−SSΩ̃SS ∼ O(NC),

ṽ−C Ω̃C , ṽ±2 Ω̃LS , ṽ+
T Ω̃T , ṽ+

SSΩ̃SS , ṽ−LS2Ω̃LS2 ∼
O(1/NC),

ṽ+
LS2Ω̃LS2 ∼ O(1/N3

C). (3)
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A simple derivation of these scaling relations is given be-
low.

For a dynamical interpretation re-expression of the in-
teraction in terms of the 5 Fermi invariants S, V, T,A, P
is required. These are defined as [10]

S = 1, V = γ1
µγ

2
µ, T =

1
2
σ1

µνσ
2
µν ,

A = iγ1
5γ

1
µ iγ2

5γ
2
µ, P = γ1

5γ
2
5 . (4)

In terms of the Fermi invariants the interaction takes
the form

VNN = ū(p′1)ū(p′2)[v+
j + v−j τ 1 · τ 2]Fj u(p1)u(p2), (5)

where the Fj , j = 1...5 represent the Fermi invariants in
the order S, V, T,A, P .

The linear relation between the spin operators Ω̃j and
the Fermi invariants Fj is given (to order 1/m2

N ) in ref. [4].
Since the nucleon mass mN ∼ O(NC), only the leading
terms in 1/m2

N are needed for the present large-NC limit
considerations.

The NC dependence of the components of the poten-
tial (1) may be inferred directly by quark model consider-
ations. Consider the single quark operators 1, σj , τk, σjτk.
Matrix elements of the sum over NC such quark operators
in nucleon states then depend on NC as follows [11]:

〈N |
NC∑
q=1

1q|N〉 ∼ NC , 〈N |
NC∑
q=1

σq
j |N〉 ∼ N0

C ,

〈N |
NC∑
q=1

τ q
k |N〉 ∼ N0

C , 〈N |
NC∑
q=1

σq
j τ

q
k |N〉 ∼ NC . (6)

In the large-NC limit the baryon-baryon interaction
may be interpreted as meson exchange, since the gluon
lines may be replaced by qq̄ lines in all surviving (planar
gluon) diagrams. The meson-baryon couplings are propor-
tional to the quark operator matrix elements above and
inversely proportional to the meson decay constants fM ,
which scale like

√
NC [1]. Application of the scaling rela-

tions (6) and multiplication by 1/f2
M to the two-nucleon

system directly implies that

ṽ+
C Ω̃C , ṽ−T Ω̃T , ṽ−SSΩ̃SS ∼ O(NC),

ṽ−C Ω̃C , ṽ+
T ΩT , ṽ+

SSΩ̃SS ∼ O(1/NC). (7)

The order in NC of the spin-orbit interaction may
be found by noting that the momentum operator P
in the spin-orbit interaction operator always appears in
the combination P /mN , where mN ∼ NC . The isospin-
independent term ṽ+

LSΩ̃LS contains the spin operator of
one nucleon in combination with P /mN , and therefore the
vertex scales as 1/NC . If the quark coupling at the other
nucleon line is ∼ 1q, it follows that ṽ+

LSΩ̃LS ∼ O(1/NC)
once the overall factor 1/f2

M is taken into account. For the
isospin-dependent spin-orbit interaction the scaling factor
or the vertex with a spin operator multiplying P /mN and
an isospin operator is N0

C . In this case the vertex at the

Table 1. Order of the leading term in the 1/NC expansion of
the Fermi invariant potential components.

Isospin S V T A P

1 NC NC 1/NC 1/NC NC

τ 1 · τ 2 NC NC NC NC N3
C

other nucleon line also contains an isospin factor, so it also
scales as N0

C . Thus, it follows that ṽ−LSΩ̃LS ∼ O(1/NC).
The NC scaling of the isospin independent quadratic spin-
orbit interaction may be obtained by a direct extension of
these arguments.

When the interaction is re-expressed in terms of Fermi
invariant potential components v±j as in ref. [4], with re-
tention of only the leading terms in 1/m2

N (i.e. in 1/N2
C)

the order in 1/NC of the terms is given in table 1 [5].

2.2 Dynamical interpretation of the potential
components

The only isospin-independent potential components that
are of order NC are the scalar and vector components
v+

S and v+
V as well as the pseudoscalar component v+

P .
The first one of these corresponds to the largest compo-
nent in the two-pion exchange interaction between nucle-
ons [12,13], which commonly is modeled in terms of a
scalar (“σ”) meson exchange mechanism [14,15]. The sec-
ond corresponds to the short-range repulsion between nu-
cleons, and is commonly modeled in terms of a ω meson
exchange interaction, with an overstrength effective ω nu-
cleon coupling constant [15]. The last (pseudoscalar) term,
which may be interpreted as η meson exchange is large in
the earlier potential models, but very small in the most
recent models.

Among the isospin-dependent Fermi invariant poten-
tial components in table 1 the pseudoscalar component is
of order N3

C and are thus the largest of all terms in the
1/NC counting scheme. This strong pseudoscalar exchange
component v−P is immediately interpretable in terms of the
long-range pion exchange interaction between nucleons,
which is expectedly “strong”, because of its long range.

That the other isospin-dependent Fermi invariant po-
tential components are of order NC also corresponds to
established nucleon-nucleon phenomenology. To see this,
it is worth noting that an isospin 1 vector meson (ρ) ex-
change interaction may be expressed in terms of Fermi
invariants as follows [16]:
(
γ1

µ − κ

2mN
σ1

µν kν

)(
γ2

µ +
κ

2mN
σ2

µα kα

)
=

κ

m2
N

P 1
µP

2
µS

+(1 + κ)V − κ(1 + κ)k2

4m2
N

T +
κ(1 + κ)

m2
N

P 1
µP

2
µP. (8)

Phenomenological boson exchange interaction models
typically contain a ρ-meson exchange interaction, where
the “effective” tensor coupling of the ρ-meson to nuclei is
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large κ ∼ 7 [15]. Because of the large tensor coupling, such
an isospin-dependent vector meson exchange interaction
contributes strongly to all the Fermi invariant potential
components, except the axial vector invariant. The order
NC of the potential components v−S , v−V , v−T thus may be
interpreted in terms of a strong ρ-meson exchange inter-
action.

While the isospin-dependent pseudoscalar poten-
tial v−P P is of order N3

C , the corresponding isospin-
independent potential v+

P P is only of order NC . This
corresponds to the phenomenological finding in boson ex-
change models for the nucleon-nucleon interaction that the
η-meson exchange term is much weaker than the π-meson
exchange interaction component.

3 Large-NC components of phenomenological
interaction models

The simplest numerical estimates of the potential compo-
nents are their volume integrals. These are given in ta-
ble 2 for the 4 considered interaction models. In the case
of the V18 potential, the operator form of which contains
a quadratic spin-orbit interaction of the form (L ·S)2, we
employ the relation

(L · S)2 = 2L2 + 2Ω̃LS2 − 2Ω̃LS (9)

to reduce the interaction to the standard form (1) in com-
bination with terms of the form L2.

In the case of the isospin-independent scalar interac-
tion these volume integrals are all of the order 10 fm2,
ranging from −6.3 fm2 for the Paris potential to −13.5 for
the CD-Bonn potential.

If the isospin-independent scalar potential component
is interpreted as due to a single scalar meson exchange
interaction, the volume integral would equal −g2

S/m
2
S ,

where gS is the scalar meson-nucleon coupling constant,
and mS the scalar meson mass. If mS is taken to be 600
MeV the value of the effective scalar meson coupling con-
stant for these interactions range between 7.6 and 11.2
(table 3). It is striking how closely similar values obtain
for the “effective” scalar meson coupling constants with
the 4 different interaction models, two of which do not
contain any scalar-meson–like term in their parametrized
forms.

In a meson exchange interpretation the isospin-
dependent scalar interaction arises from exchange of the
a0(980) meson. The volume integrals of these interactions
should equal −g2

a0
/m2

a0
, where ga0 is the a0(980)-nucleon

coupling constant and ma0 is the mass of the a0(980). If
the value of the “effective” a0(980)-nucleon coupling con-
stant is extracted from these volume integrals, the values
range from ga0 = 9.0 to ga0 = 10.4 (table 3).

The isospin-independent vector interaction admits an
interpretation in terms of a repulsive ω-meson exchange
interaction. The shape of this interaction component is
very similar for all the interactions considered, and the
volume integrals are also remarkably similar, ranging from

Table 2. Volume integrals (in fm2) of the leading terms in the
1/NC expansion of the Fermi invariant potential components
phenomenological interaction models.

Component V18 CD-Bonn Nijmegen (93) Paris

v+
S −8.7 −13.5 −10.3 −6.3

v−
S −3.2 −3.3 −3.3 −4.4

v+
V 9.4 11.6 8.7 10.2

v−
V 3.2 3.2 2.9 4.4

v+
T −0.1 0.0 0.0001 0.03

v−
T 0.6 0.1 0.001 0.46

v+
A −0.1 0 0 0.03

v−
A 0.6 0 0 0.46

v+
P 9.8 0.0 0.35 18.0

v−
P 360 338 323 352

Table 3. Effective meson-nucleon coupling values that corre-
spond to phenomenological interaction models.

Component V18 CD-Bonn Nijmegen (93) Paris

gσ 9.0 11.2 9.8 7.6
ga0 9.0 9.0 9.0 10.4
gω 12.2 13.5 11.7 12.7
κρ 7.0 7.0 6.3 10.1
gη 8.7 0.0 1.8 11.7
gπ 13.4 13.0 12.7 13.2

8.7 to 11.6 fm2. If the “effective” ω-nucleon coupling con-
stant is extracted from the volume integrals, by setting
them equal to g2

ω/m
2
ω the values range between 11.7 and

13.5.
The isospin-dependent vector interaction, by eq. (8),

admits an interpretation in terms of ρ-meson exchange.
This interaction component is roughly 3 times weaker
than the corresponding isospin-independent interaction.
The volume integrals of the isospin-dependent vector in-
teraction range from 2.9 to 4.4 fm2 for the 4 phenomeno-
logical interactions considered here. In a simple ρ-meson
exchange model these volume integrals equal (1+κ)g2

ρ/m
2
ρ,

where gρ and κ are the vector and tensor ρ-nucleon cou-
pling constants. The canonical value for the ρ-nucleon vec-
tor coupling constant is g2

ρ/4π ∼ 0.5. If this value for gρ is
used in the expression for the volume integral, an “effec-
tive” value for κρ can be determined. The volume integrals
in table 2 for the 4 interaction models then give values for
κρ in the range 6.3–10.1, in agreement with the early find-
ing that κρ ∼ 6.6 [17].

In a meson exchange model the tensor potential arises
from vector meson exchange when the vector mesons cou-
ple to the nucleon with a Pauli (tensor) coupling. As in
the CD-Bonn interaction model the isospin-independent
ω-meson exchange interaction has no Pauli coupling term,
v+

T vanishes in this interaction model.
By the NC counting rules in table 1 the isospin-

independent tensor interaction should be smaller by
1/N2

C than the isospin-dependent tensor interaction.
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Comparison of the corresponding set of volume integrals
in table 2 shows that the phenomenological interaction
models considered here satisfy this rule well.

The order NC of the isospin-dependent tensor inter-
action alone does not explain why this interaction is one
order of magnitude smaller than the corresponding vector
interactions for all the phenomenological potential mod-
els. For boson exchange models the reason is readily seen
in eq. (8), which shows that the tensor coupled vector
meson exchange interaction is suppressed by an overall
factor 1/m2

N , which is only partially counteracted by the
large tensor coupling κρ. For the phenomenological inter-
action models the reason for the weakness of the isospin-
dependent tensor interaction is to be found in the fact
that pion exchange gives rise to the bulk of the isospin-
dependent spin-spin and vector interactions, and this pion
(or pseudoscalar) exchange contribution is exactly can-
celled in the combination of v−SS and v−T . This latter ar-
gument may also be extended to the isospin-independent
tensor interaction, where the pseudoscalar —in this case
the η-meson— exchange contribution cancels in the com-
bination of v+

SS and v+
T .

In single-meson exchange models only axial vector me-
son exchange gives rise to an axial vector interaction. Since
the CD-Bonn and the Nijmegen (93) boson exchange in-
teraction models do not contain any a1-meson exchange
terms, these interaction models have no axial vector ex-
change components. The phenomenological V18 and Paris
potential models give rise to small A interaction compo-
nents. These satisfy the NC counting rules in table 1,
by which the isospin-dependent axial vector interaction
should be larger by N2

C than the isospin-independent one
as seen in table 2.

In a single-meson exchange interpretation the longest-
range mechanism that contributes to the isospin-
independent pseudoscalar interaction, is η-meson ex-
change. This interaction component is not well con-
strained by nucleon-nucleon scattering data. As a conse-
quence the phenomenological interaction models consid-
ered here give widely different results for this interaction
component.

The η-nucleon coupling constant is not well known.
An estimate for this coupling constant may be obtained
from the volume integrals of the phenomenological inter-
action models if these are set to equal g2

η/m
2
η. From the

volume integral values listed in table 2 one then obtains
values for gη, which range from 1.8 (Nijmegen (93)) to
11.7 (Paris) (table 3). Analyses of observables, other than
nucleon-nucleon scattering as, e.g., η-meson photoproduc-
tion suggest that the coupling constant value should not
exceed 2.2 [18].

The isospin-dependent pseudoscalar exchange interac-
tion is strong and has long range. Its main component is
the long-range pion exchange interaction, which is built
into all the phenomenological interaction models consid-
ered here. Because of this all the interaction models con-
verge for nucleon separations larger than 1 fm. This in-
teraction component is also the strongest component by
NC counting, as it scales as N3

C (table 1). The volume

integrals of this interaction component are listed in ta-
ble 2 for the 4 interaction models considered, and range
from 323 fm2 to 360 fm2. The corresponding values for
the pseudoscalar pion-nucleon coupling constant gπ range
from 12.7 to 13.4, when extracted by equating the numer-
ically determined volume integrals with g2

π/m
2
π (table 3).

4 Exchange currents in the large-NC limit

The scaling rules (6) may be applied to give the large-NC

scaling behavior of both the single-nucleon current opera-
tors as well as of the exchange currents that are associated
with the interaction (1) [5]. As an example the axial cur-
rent and charge operators of a single nucleon,

A± = −gAστ±, A0
± = −gA

σ · p
mN

τ±, (10)

are of order N1
C and N0

C , respectively.
There is no axial exchange charge operator that would

be directly proportional to the pseudoscalar invariant po-
tential component. There is, however, an axial exchange
charge operator, which is of order N0

C , and which arises
from the long-range pion exchange interaction, which gives
rise to the bulk of the pseudoscalar interaction component.
This axial charge operator was derived in ref. [19], and has
the form

A0
±(π) =

gA

4π

(
mπ

2fπ

)2

Σ12 · r12(τ 1 × τ 2)±

×
(

1 +
1

mπr12

)
e−mπr12

mπr12
, (11)

where Σ12 = σ1 + σ2. Because the pion decay constant
fπ ∼ √

NC in the large-NC limit, it is readily seen by the
relations (6) that this operator is of order N0

C .
The contributions of the two-nucleon exchange cur-

rent terms to the axial charge operator are conventionally
expressed in the form of an effective single-nucleon ax-
ial charge operator. The exchange current contributions
then represent nuclear enhancement factors of the single-
nucleon axial charge operator (10). Experimental studies
of first-forbidden nuclear β-transitions reveal that this en-
hancement factor runs from about 1.7 in light nuclei [20]
to about a factor 2 in heavy nuclei [21]. About one half
of this enhancement may be attributed to the pion ex-
change operator (11), which is natural as its order in the
1/NC expansion is the same as that of the single-nucleon
operator (10). The bulk of the remainder arises from the
exchange current, which is associated with the isospin-
independent scalar interaction [3]. While the order of this
term is 1/NC , it gives rise to a direct term matrix el-
ement, which enhances its value relative to that of the
matrix element of the pion exchange term (11), which is
an “exchange term”.

A complete list of the NC dependence of the axial and
electromagnetic exchange current operators that are asso-
ciated with the interaction components in the Fermi rep-
resentation is given in [5], along with explicit expressions
for the corresponding potential components.
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5 Discussion

This analysis of 4 commonly employed phenomenological
nucleon-nucleon interaction models reveals that the struc-
ture of their components is completely consistent with
their corresponding dependence on NC (or 1/NC). For all
the interaction models the isospin-dependent pseudoscalar
components, which contain the long-range pion exchange
interaction, have volume integrals that are larger than
those of any other interaction component by more than
an order of magnitude. This interaction component also
scales with the largest power of NC (N3

C) (table 2).
The interaction components that follow the isospin-

dependent pseudoscalar interaction in strength are the
isospin-independent scalar and vector interactions, which
scale as NC . These interaction components are those re-
sponsible for nuclear binding (v+

S ) and short-range repul-
sion between nucleons (v−V ). For distances shorter than
0.4 fm the variation in form of these interaction compo-
nents between the 4 considered phenomenological interac-
tion models is substantial [5].

Next in strength are the isospin-dependent scalar and
vector interactions, which also scale as NC . The volume
integrals of these interaction components are about half
as large as those of the corresponding isospin-independent
interactions.

The tensor and axial vector interaction components
are very weak for all the considered phenomenological in-
teraction models. For the isospin-independent tensor and
axial vector components this is completely consistent with
their NC dependence, which is 1/NC . The smallness of the
isospin-dependent tensor and axial vector exchange inter-
action components cannot be explained by their NC de-
pendence alone, as they scale as NC . In meson exchange
models the smallness of v−T is however natural, as it arises
from tensor coupled vector mesons, and contains an over-
all factor 1/m2

N (8).
The least well-understood interaction component is

the isospin-independent pseudoscalar interaction. This
component, which scales as N1

C , is vanishingly small in two
of the considered phenomenological interactions and even
stronger than v+

V in the other two. The longest-range part

of this interaction component arises from η-meson ex-
change. The large variation between the phenomenological
interaction models for this interaction component reflects
the continuing uncertainty concerning the strength of the
η-nucleon coupling.

Research supported in part by the Academy of Finland by
grant 54038.
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